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VI. The Theory of Continuous Calculating Machines and of o Mechanism of this
class on a New Principle.

By Professor H, S. HELE SHAW.

Commumnicated by Professor Sir WiLLiAM THOMSON, F.R.S.
Received and Read June 19, 1884.

THERE are an almost unlimited number of applications for a mechanism by means of
which the velocity ratio between two rotating pieces could either be determined at any
instant, or be made to vary in any required manner. Such a mechanism would enable
two variable quantities to be dealt with numerically, for with it the operations of
differentiation and integration could be mechanically performed.

For differentiation it would be necessary to cause two rotating bodies, which might
be disks or rollers, to be turned at speeds which varied respectively according to the
rates of change of the variable quantities, one quantity being a function of the other,
when the velocity ratio, shown by a suitable index, would give their differential
coefficient. This is evident, because velocity is simply the space passed over in a
given time, and is, in the limit, proportional to the increment of this space. For
integration, while one body is moved at a rate which changes with the independent
variable, the velocity ratio of the two bodies (i.e., the two rotating disks or rollers)
must be made proportional to the dependent variable. The actual velocity of the
second or driven rotating body then becomes a measure of the product of the latter
into the rate of change of the former at the same instant. The motion of the driven
body, as recorded for any period of time by a suitable index, is therefore a measure of
the integration of their product for that time.

The primary or simple form of mechanism has but small value in comparison with
the possibilities which a combination of such mechanisms seems to offer. The index,
which shows the differential coefficient, or the driven disk which records the results of
integration, can have respectively but one position or rate of motion at any instant.
By employing, however, a suitable series or chain of such mechanisms, if need be of
both kinds, the final index or the final disk could be made to either indicate or record,
as the case might be, the result of any required number of conditions. It is difficult
to say what limit there would be to the powers of the continuous calculator which
such a combination would form.

The only hitherto known mechanism by which both the foregoing operations can be,

3 B2

GTJ
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to é;w 3}}
Philosophical Transactions of the Royal Society of London. IIN@RY

)

WWWAJSIOI’.OIJ’g



368 PROFESSOR H. S. HELE SHAW ON THE THEORY OF

in theory, effected appears to be that commonly referred to as the ¢ disk and roller,”
with its modification, the disk-globe and cylinder-mechanism, or apparatus such as
cones and belting which when analysed are all found to depend for their action upon
the same kinematic principles. The action of the mechanism is simple enough, the
disk, which is usually the piece to which motion is primarily imparted, drives the
roller with a speed proportional both to its own angular velocity, and to the distance
of the roller from its centre. Pieces of apparatus, such as cones and belting, apart
from their unavoidable inaccuracy, are only suitable for the latter of the two above
operations, viz., integration, and will therefore not be further alluded to.

The disk and roller mechanism is chiefly known as a mechanical integrator. Its
application for this purpose is due to PoNcELET, who first suggested -its use for ergo-
metrical purposes as set forth in his ‘Mécanique Industrielle,” and it was thus employed
by General MoriN. In this case it was used to perform the operation [Fds, where F was
the force of traction measured by a spring, ds being the increment of space passed over
at that instant by the cart. It was soon afterwards employed by Professor MoSELEY
in a “censtant steam engine indicator” designed for the use of a committee of the
British Association.® In this instrument the disk was replaced by a cone, and T was
the varying pressure of steam in the cylinder. Since then the disk and roller
principle has been adopted by many inventors for purposes of integration in con-
Jjunction with dynamometers for measuring the power transmitted from a prime mover
or to a machine. The cone and roller principle was employed by Professor MoSELEY
in a calculating machine,t and by SANG and others as a Platometer or Planimeter.
Messrs. AsaToN and Story have revived the application of the disk and roller to a
continuous Indicator, which should, however, really be called a steam-power Integrator.
In the last-named instrument advantage is taken of the fact that as the steam
pressure acts alternately on one side or the other of the piston, the roller may be
made to take a corresponding position on either side of the centre of the disk, thus
both the forward and backward stroke of the engine combine to effect the continuous
rotation of the roller in one direction, and thereby integrate the total work done.

All the foregoing examples are applications of the disk and roller mechanism for
purposes of integration. Differentiation may practically be effected by means of the
disk and roller in the following manner:—In fig. 1 let G represent the disk, and B
the movable roller. Instead of the roller B being fixed to its axis the latter is a
screw (E E) of which B forms the nut. TFor convenience the disk is supposed to be
driven from the hollow shaft F' by means of the roller A, which is always at a
constant distance from the centre of the disk, and may be therefore alluded to as
having the same motion as the disk. Suppose this screw (EE) to be turned by one
body whose rotary motion varies with the rate of increase of one of the two variable
quantities, while the motion of the disk depends on the rate of increase of the other

* 11th Report of the British Association, p. 308.
t L. E. and D. Phil. Mag., vol. xxx., p. 171.
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Figs. 1, 5, 6, and 7.

variable quantity. If now the roller B which is driven without circumferential
slipping by the disk has a greater angular velocity than the screw, it will, by its
action on the screw, be moved inwards towards the centre of the disk until its rate
of motion is the same as that of the screw. If its rate of angular motion is less it
will be moved by the screw outwards until in a similar way it is at rest. This may

be simply expressed in symbols thus—

Let
w=angular velocity of screw EE, <.e., of roller B.

w,=angular velocity of shaft F, 7.e., of roller A.
R=radius of disk.
y=distance of B from centre of disk.
Then if, as is assumed to be the case, diameter of A=diameter of B

ul locity of B
angular velocity o w Yy K

angular velocity of A = aTl —RT

K being constant and equal to 1%

That is, v is a direct measure of the ratio g
1

Now there is no limit in theory to the speed of the screw (EE) or of the roller (B),
consequently the latter may be caused to occupy its correct position with any required
rapidity.

Theoretically, therefore, ¥ may be made to measure at every instant the ratio of the
angular velocities, t.c.
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de

S w dt dz

Y= T de
dt

where dz and dx correspond respectively to the rates of change of the two variable
quantities at any time ¢.

The author three years ago applied this principle to the construction of a speed
indicator. The disk was driven by a clock, and the screw by the body whose speed was
to be indicated. In this case o, the angular velocity of the shaft A, was constant.

Then

w=y%=yK.

There were in the above instrument two screws of opposite pitch working inde-
pendently upon one axis; so that each half of the diameter of the disk, available upon
either side of its centre, could be employed. On either screw was a roller, working as a
nut and connected with a corresponding index upon a dial, so as to always indicate its
position upon the disk. One dial was arranged to indicate the speed of the engines
of a steam vessel, while at the same time the other was indicating its corresponding
speed through the water, so as to simplify the work of progressive speed trials. Two
practical advantages may be noticed in connexion with such an instrument. The
first is that a speed indicator of this kind may be placed in any part of the ship and
communication made electrically, as was done in the above case. The second is that
the slight and irregular variations in velocity which in most speed indicators, such as
the strophometer of HEARSON and the tachymeter of Buss, necessitate special arrange-
ments of springs to diminish the oscillations of the index hand, are not recorded with
this kind of instrument. This latter fact is the result of the gradual action of the
screw, which may, however, be so arranged as to cause an indication of any required
degree of sensitiveness. It is not necessary to further describe the instrument, which
suffers from the inherent defécts of the disk and roller, and the principle of which the
author found had previously been suggested by two correspondents in ¢ Engineering,”*
and very possibly by others. Quite recently (May 24) a speed indicator of this kind
was exhibited before the Physical Society by Mr. W. GoLpeN and Sir A. CAMPBELL,
in which the disk was replaced by a cone, and on the same occasion Mr. N. BAILEY
described a speed indicator of his own which was no other than the simple disk and
roller applied in this way.t

Enough has been said to show that a great many attempts have been made to
employ for practical purposes the invaluable principle of the disk and roller in two
distinct ways, one of which is the converse of the other.}

# ¢ Engineering,’ vol. xx., p. 314.

+ ¢ Nature,” vol. xxx., p. 140.
t There is, it is true, yet a third way of using the disk and roller, which is most important and
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It now, therefore, becomes necessary to examine the defects of the disk and roller
in view of both the foregoing purposes. These defects may be said to be of two
kinds—

(1.) Those which are the result of the principle of action itself.
(2.) The limited range of action of the instrument.

(1.) The very conditions under which the disk and roller works are contradictory.
On the one hand the roller must slide sideways, that is, in a perpendicular direction
to its plane of rotation, or the relative velocity cannot be changed. On the other
hand no sliding or slipping must take place in the direction of its rotation, which must
be only a motion of pure rolling contact. The roller has to work upon continuously-
changing circles, and nothing in the nature of a toothed or serrated edge is admissible.
Such a serrated edge has, indeed, been introduced by some inventors, and the sur-

face of the cone or disk on which it works made, as of course it must be, of softer
metal. This was so in the instrument of MoseLEY for integrating the work of a
steam engine; but it is a significant fact that the committee speak of the slight
furrows’ caused in consequence upon the driving cone.* Now it is easy to see that
these slight furrows must introduce an error, as the position of the roller continually
changes, and quite vitiate the differential principle of action. The force of friction
which must therefore be employed to ensure rolling countact leads to the three
following defects :— . .

(1.) Grinding action between the edge of the roller and face of the disk.

(ii.) Necessity for the application of force in order to change the position of

the roller.

(iii.) Error in numerical results.

(i.) The first of these is well known, and is in fact illustrated in an extreme case by
every mortar or pug mill. As the edge, which must initially have some appreciable
thickness, however slight, grows wider, the evil increases, and the size of the roller
altering the accuracy of its record is destroyed. This must take place rapidly in the
case of the steam engine integrator, where such a wide range of motion occurs at
every stroke of the engine.

(iL.) The second defect is a serious one where the instrument is employed for
ergometrical purposes, as even allowing that the friction may be always constant at
one portion of the disk, it cannot be so where the conditions of rolling are different.

Where the disk and roller is employed as a screw for the converse process, the same
actual side friction must also take place, though it is not so apparent. The objects for
which it has been more frequently suggested or employed require the use of a clock,
and the author has, in endeavouring to apply the principle to the above-mentioned

entirely distinet in principle from the two already discussed, but its application is only suitable for

numerical and discontinuous calculation; and as, moreover, it involves no new mechanical arrangement,

it is not alluded to until hereafter (p. 385), when discussing the other purposes of the new mechanism.
* 11th Report of the British Association, p. 321.
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speed indicator, experienced no small difficulty in consequence of the powerful and
expensive clockwork required to ensure a uniform speed of rotation.

It is with combinations of this mechanism that the evil results of this loss of power
are most evident, not merely because of the limited extent to which it can only in
consequence be applied, but because of the unavoidable introduction of errors.

(iii.) The third and last objection, first pointed out by Professor CLERK MAXWELT,

is perhaps the most serious of all.

Fig. 2.

Let A (fig. 2) be a plan of the roller, O being the centre of the disk which is
turning in the direction indicated by the arrow N. Let A Q be the reaction to the
force required to drive the roller round, acting at its periphery at the point of contact
with the disk. This force though small must exist, and the result is that the
displacement of the roller when the larger force A P (which is that tending to alter its
position radially on the disk) comes into operation is not radial but along A R. This
line A R is the direction of the resultant of A P and A Q, and by moving along it the
roller really slips through a circumferential distance R P, which represents the actual
error thus entroduced into the result. The total error is thus proportional to the
distance moved sideways by the roller, that is, to its transverse displacement. It is
this fact which is ignored in the tests of ergometers. The common method of
procedure is to turn the instrument through a certain distance with a load deflecting
the spring to a known and constant amount, and the roller consequently at one radial
position on the disk. This is repeated for various other positions of the roller when
the record of work done is in each case found to be correct, and it is hard to see why
it should be otherwise. These are not, however, the practical conditions of working,
which, as a rule, are totally different. In ergometers and steam engine integrators,
for instance, a continual change takes place in the position of the roller due to
fluctuations of power or steam pressure. This introduces an error in the way
described which it does not appear possible to allow for even if the law of variation be
known, without elaborate calculation. It certainly would be difficult to test an
ergometer or similar instrument with a view to ascertaining and allowing for this
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error since exactly similar conditions to those occurring in practice must be ensured,
and it may be fairly asked, What check is there upon the records of the large number
of instruments of this kind in use ?

It was for the purpose of obviating the defects of combined sliding and rolling
action* that Professor JaMEs THoMsON invented the disk- globe- and cylinder-
integrator. This mechanism was at once applied by Sir Wirriam TromsoN for
purposes which had previously been deemed incapable of mechanical treatment, viz.,
the analysis required in connexion with tide-calculating machines. But, more than
this, it was shown by Sir Wirriam THoMsON that the combination for purposes of
integration, now possible from the reduced friction, were not only applicable for
calculating [¢(x)y(x)dw, the integral of the product of two functions, but could in
theory integrate linear differential equations of any order with variable coeflicients.t
In one application of the mechanism which has been devised by that gentleman for
the solution of a differential equation two machines are employed. The fork of one
sphere is connected with the cylinder of the second, and the fork of the second sphere
with the cylinder of the first. Thus the motions ¢, and g, of the centre of the sphere
are obtained, and by eliminating the latter, the former (¢;) is found to be the solution
of the differential equation. This method requires the measurement of the movement
of the fork, that is, of the centre of the sphere, to obtain the result. The use of the
positron of the fork indicated on a scale at every instant in order to obtain a differential
coefficient does not appear to have been proposed, and the author therefore ventures
to suggest the following arrangement of the disk- globe- and cylinder-mechanism for
that purpose.

Figs. 3 and 4.

il

s

Figs. 8 and 4 represent this arrangement in front and side elevation. The disk, as
in the corresponding disk and roller mechanism, is driven by the wheel A, at a speed
which varies as one variable quantity, and communicates a corresponding motion to
the globe, and thus to the cylinder. The axis of the cylinder is prolonged, and upon
it is cut a screw which works through a nut N.  This nut forms the axis of the second

* ¢ Proceedings of the Royal Society,” vol. 24, p. 263.
t Ibid., pp. 266, 271.
MDCCCLXXXV, 3 ¢
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wheel B, which is likewise driven at a speed which varies with the other variable
quantity. The wheel B, though not rigidly connected with N, compels it by means
of its square or polygonal section to rotate with the same angular velocity, while at
the same time allowing it to slide freely in a longitudinal direction. If, now, the
wheel A, or what is the same thing, the cylinder, has the same angular motion as the
wheel B, then the nut N remains at rest. If the motion is not the same, the nut is
moved by the action of the screw until it is so. The position of the centre of the
globe, or of the index I on the scale S, indicates at a glance the ratio of the
increments of the two quantities.

Just as in the case of the disk and roller, by causing the motion of the wheels A
and B.to be sufficiently rapid, the differential coefficient may be approached with any
required degree of closeness according to the equation

where y is the distance of the centre of the sphere from the centre of the disk. If
this mechanism were applied to measure velocity, the wheel A would be driven
directly by the clock, the wheel B by a machine whose velocity is to be measured.

Another mode of dealing with the resistance of the roller to sliding has been
suggested by Mr. VERNoN Bovs,* in connexion with a different mechanism. This
method consists of a very ingenious device which the inventor terms a * mechanical
smoke ring,” but though described by means of a detailed drawing it does not appear
to have been actually constructed, and indeed it is not easy to see how this could be
accomplished to ensure a piece of mechanism giving accurate results.

(2.) It is now necessary to consider the second kind of objection, viz., the limited
range of measurement of the disk and roller. This does not affect the magnitude of
the growth of either variable, but it does affect the measurement of their ratio, which
is given by the radius of the circle on which the roller or sphere is turning on the
disk. In theory it is only necessary to alter the units and reduce the scale to any
required extent. This, in the integrating form, merely results in magnifying the errors
near the zero position, that is near the centre of the disk. In the converse application
it has a more serious result, which must be briefly considered.

Bearing in mind that it is the ratio of the rate of change of the two quantities
which is being now considered, let it be assumed that this with each of them in turn
becomes relatively very small. 1st. Let this take place with the one which regulates
the motion of the screw; in which case the roller B, fig. 1, simply moves inwards
towards the centre of the disk, and will register to the limiting value however small.
That is in the notation already adopted, since

|
wzyﬁ

* ¢ Philosophical Magazine,” vol. xxii., p. 80.
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In the limit when
o=0 y=0

2ndly. If the rate of change of the other quantity, that is, the one connected
with the disk, becomes very small, then the roller B moves outwards and reaches the
edge of the disk, at which point
y=R and o=0,

that is, with the equal rollers (A and B) it is impossible to indicate a ratio less than
unity. It should be noted that any increase, however great, of the quantity now
being considered can be (in theory) measured, for if w; becomes very great, ¥ becomes
very small, and may approach as nearly as desired the limiting case when

Yy=0 ow;=w.

Any advantage arising from this latter consideration does not counterbalance the
disadvantage that when w=w, any further decrease in the speed of the roller A causes
B to leave the disk and necessitates special arrangements, not so simple as it might at
first be supposed, to bring B on the disk again.

In the cases in which this kind of mechanism would most probably be applied in
practice, a clock would be used, so as to make one of the two speeds constant, and
only introduce one variable quantity. It is evident from what has been said that the
clock would always be employed to drive the disk by means of the roller A, for then
the maximum rate change of the variable, which variable might for instance be velocity,
would be previously ascertained. The dimensions could then be arranged so that the
indicating roller B would never leave the disk, while the lowest velocities, down to
the stopping of the body in motion, would be recorded. The author found that in
designing the speed indicator previously alluded to, a suitable velocity of the disk
was not easy to attain without unduly increasing its size and introducing consequent
mechanical disadvantages.

In order to obtain unlimited range within a small compass, the author therefore
designed the arrangement shown in fig. 5. The driving roller A’ is directly connected
with the other roller B', so that their radial positions on the disk change together and
to an equal extent, their distance apart being equal to the radius of the disk (R). At
the same time their angular motions are independent of each other.

Let z=distance of A’ from centre of disk, then

o Yy
0, =z
but
z=R—y
therefore
o=,
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Let

y=0 then w=0
y=2=R—y ,, o=0
y=R ,, =00 (i.e., may approach that value).

Though the greatest possible range is thus obtained the result is not really so
convenient for practical purposes. For instance, with an ergometer or steam engine
integrator one advantage of the former mechanism is lost, for now work is not
registered in simple proportion to the deflection of the spring. For the converse
purposes the scale would merely have to be graduated according to the equation
betweed w and y (w; being constant). ,

There is, however, a connexion between the two forms of disk and roller which
bears a resemblance of considerable interest to two corresponding forms of sphere and
roller, and when followed out leads to important results.

In fig. 6 let O be the centre of a sphere which rotates on two fixed centres
C and O, that is about the axis C C,.

Let @ be the point of contact of the roller A which works against, or rolls upon,
the great circle of revolution (z.e., the equator), and b the point of contact of the roller
B which rolls on a small circle whose radius is bq.

Let angle of plane of rotation of B with axis C C;=a

then
angular velocity of B_ o _ &g
angular velocity of A~ ;" Oa
but
bg by _ .
0a~ 0~ %
therefore
[ .
—=8smnao
@,
or

0=, sin a

In fig. 7 the roller A’ is movable as well as roller B. They are both attached
to the same movable frame—their planes of rotation being always perpendicular to

each other.
Then

angular velocity of B o vy

angular velocity of A’ —wl/=@

/

[N w4

but by similar triangles O'q'd’, O'p'a
alp/= O/ql
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therefore
2_ blql
“’1 - O/ g/

= tan a

or
o=o; tan o
These may be called the “sphere and roller” arrangements or mechanisms. The
relation between the two forms of disk and roller is now clear. The first is derived
from the more general sine or cosine (or secant, or cosecant) form of sphere and roller
mechanism, the second may be in the limiting positions compared with the tangent
or cotangent form.

For in the first case, when '
a=0  then w=0

a=90° , o=
or as before by changing the rollers
a=90° then v =,

a=0 » W=

So that the range in the sine form is either from 0 to w, or from o, to .
In the second case, when

a=0 0w=0
a=45 0=,
a=90 W= 0

So that the range in the tangent form is (theoretically) from 0 to .

These results were brought by the author before the Physical section of the Bristol
Naturalist Society in November last, and illustrated by a model with a wooden sphere
6” in diameter. It was, however, in endeavouring to apply them to practical purposes
that the author was led to the investigation which has resulted in the present
communication.

In fig. 6 take any point P in the axis of rotation of the sphere. Draw P F in a
direction perpendicular to the plane of rotation of the roller B. Then by a suitable
mechanical device consisting of a cross F, sliding upon a rod ‘O T through which
another rod turning about the centre P freely passes, it is evident that for any value
of the angle &

PF

6E=Slna

but by previous reasoning it may be arranged that

o - dz .
—=—=SsIna
w, dz
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also
OP=a constant==Fk
therefore

) dz

So that P F is a direct measure of the ratio, as is the radial distance of the roller in
the simple form of disk and roller. Moreover if s= distance turned through by a
point in the circumference of B in any time

s b[s
s=b dr= i ‘yda
where b is the radius of roller B.

In fig. 7 let P’ be again the fixed point, but now take P’ F’ perpendicular to the axis
of rotation of the sphere instead of as previously to the plane of roller B, and fix it
rigidly in this position.

Employ at T’ a sliding swivel instead of a cross as before, through which O’ F’ freely
passes, so that as the angle o’ changes in any way

P'F

ﬁ,=tan o
or as before from previous reasoning
P ;o _dz_y
or— tan o —E;—dw—k/
or
dz
7 I_ I_ —_—
PEF'=Fk =Y
or

N M T
s =bjodz_l?[0ydm

The sphere and roller mechanism might, therefore, be at once employed to replace
the disk and roller, but with the following important difference. The sine form has
still the limited range of the corresponding form of disk and roller ; but the tangent
form, while having unlimited range, has not now the inconvenient relation between
the variables of the corresponding form of disk and roller, but is as simple to graduate
and read as the other.

For practical purposes the graduation along the fixed perpendicular bar of the
tangent form will be shown to be much more convenient to read than those along the
oscillating or swinging bar of the sine form, and therefore would probably be generally
employed. For the present in what follows that form will be the only one treated of.

Although one of the practical objections, viz., that of grinding, has been obviated,
there is still left that of side slipping of the roller on the sphere when change of
velocity ratio is required to take place. This may be obviated in the following manner,
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Suppose the fixed centres C and C, (figs. 6 and 7), each in contact always with the
same point on the spherical surface to be replaced by rollers having horizontal planes
of rotation.

It will be seen that as these rollers offer less resistance than the side friction of the
other rollers, the sphere will be carried bodily round when the angle &’ is changed, and
the resistance will now only be that of the turning of the rollers C and C,. To make
the arrangement a practical one, and to hold the sphere in its place, idle rollers must
be placed respectively opposite to A and B, and fixed to the same frame in order to
counteract their pressure. Also a supporting roller must be placed underneath the
sphere, with its plane of rotation always perpendicular to the axis of rotation (C C) of
the sphere, or what is the same thing, its axis must be always parallel to that of the
sphere, and consequently carried in the same frame as the centres.

It would not be convenient to actuate the rollers A’ and B’, or to employ the screw
axis, if the frame carrying A’ and B’ actually moved in position, and there is no reason
why this should be done.

There are clearly two distinet frames, and two only to be dealt with, one carrying
the centres and supporting roller, the other carrying the two rollers A and B, and the
idle ones opposite to them. The motion of the two frames being purely relative may
be reversed, and the frame carrying the centres made the movable one.

Thus the sphere will now rotate about movable centres.

To put these ideas into practical shape, and to see if the rolling centres would
answer, a model was made to integrate areas. This is shown in plan, and front
elevation, in figs. 9 and 10. A sphere of boxwood (G) is held in a frame simply
formed by bending round suitably shaped sheet brass, which thus caused the rollers to
grip the sphere. The rollers, A A" B B’, were disks of boxwood, and merely had
common red elastic bands cemented upon their peripheries. The paper on which is
the area to be integrated is folded round a cylinder (M), and held there by two india-
rubber bands. The cylinder is turned by means of a milled wheel, N, with one hand,
and the pointer P, which is connected with the movable frame of centres, is kept on
the curve with the other. The roller A works in contact with the surface of the
paper, and communicates its motion by frictional contact of the indiarubber to the
sphere. The motion of the pointer connected with the axis of B is registered on a
suitable dial.

The model not only worked entirely in obedience to the movable centres as far as
its range of action permitted, and required only the application of an extremely
small force to change the relative position of the frames (i.e., the velocity ratio of
A and B), but although only roughly made gave approximately correct results. It
was found, however, that the weight of the sphere was not sufficient to keep it
accurately in its place, and the more elaborate integrating machine shown in plan and
elevation (figs. 11 and 12) has been constructed.

In this latter instrument rollers are placed both above and below the sphere, the
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distribution of all the rollers being shown by figs. 13 and 14 (p. 17), which are
respectively a diagrammatic plan and elevation of the arrangement. In fig. 11 the
movable frame is for the sake of clearness omitted, but it is shown in plan in fig. 12.

Figs. 9 and 10.

FRONT ELEVATION

The principle upon which the area of any curve is integrated when the pointer has
passed round the periphery is perfectly simple. In fig. 15 (p. 383) let ON, the axis
of @, be the trace of roller A on the cylinder, let P be the position of the pointer at
any point on the curve for which the ordinate

PP =y
PN =y,
PN=y,

The motion of the roller B when the pointer passes along the line 4Pg gives in
suitable units

I yyda=area of curve LPgim.
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The motion of B when the pointer passes along gP’h is
-—fyﬂw:area of curve gP’hml

because the roller A is moving in the opposite direction, and dx is negative.
Finally, the result shown by the index is

[yt~ Iyldw = [ —p)de
= f PP dx= [yoloa
=area PgP'h

Figs, 11 and 12,

ELEVATION

The same result might have been obtained with the sine arrangement (fig. 16), but
now either the top or bottom roller in the movable frame must travel along the line of
ordinates, and the point N be the centre of rotation for the end of the drum on

MDCCCLXXXYV. 3D
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which the area is wrapped. This is, of course, not so convenient, and its possibility
is chiefly interesting from a theoretical point of view.

The satisfactory working of the first model proved that the principle of action was
practicable, and some of the most important results were at once evident ; one of
these being the formation of a chain of such mechanisms in which the loss from
friction would be inappreciable ; another being the application of a rapidly moving
screw with clock-work for such instruments as speed indicators. Moreover, the
compound arrangement might be of very compact form. There was one objection
which, though of no importance in most applications for purposes of integration, was
a serious one for certain applications of the converse process. This was the fact that
the movable centres, notwithstanding the great range of velocity ratio, could never
take such a position as to give the limiting values in either direction. This is shown
at once by fig. 12, where it is seen that to do this, that is, for a to become 0° or 90°
the movable centres would have to come into contact with the other rollers A A’ or
B B. It must not be overlooked that although the roller centres are nominally in
contact at a point, yet that really the sphere, in turning, twists upon the movable
centres at its equator, while motion of the movable frame causes the supporting rollers
to twist upon the sphere at its poles. The result is that a smooth, hard, and conse-
quently expensive sphere is required, which in the integrating machine shown in
figs. 11 and 12 is made of ivory. It should be noted that even if slight wear takes
place at the centres it is distributed over the whole spherical surface, for directly the
frame moves round, the former centre becomes a point which, by a sort of precessional
action, is not likely to again become the centre, at any rate for a considerable period
of time.

It was in endeavouring to overcome these difficulties, and also account for the
satisfactory action of the rolling centres, that the author discovered that the fore-
going arrangement of movable centres was only a special case of a far more general
principle, which, like it, might, with suitable mechanism, be applied to many bodies
but which, in the case of the sphere, leads to very practical results.

‘Let fig. 17 be the perspective view of a sphere. Suppose A C A’ C’ to be the great
circle formed by the intersection of a horizontal plane with the spherical surface.
Let D ¢' D’ C be the great circle formed by a vertical plane. Then these two planes
always intersect in a diameter C C, which may have any direction in the horizontal
plane. Suppose a series of rollers, whose planes of rotation are all perpendicular to
the horizontal plane, and which are in contact with the great circle A C A’ (7, sup-
pose also a second set of rollers, whose planes are perpendicular to the vertical plane
D C D’ C, and which are in contact with the circle D C D’ C. Then, by a well-
known principle of mechanism, rolling contact can only take place between the
spherical surface and the former set of rollers, when the axis of rotation of the sphere
is in the horizontal plane, for only then will all their axes intersect the axis of rotation
of the sphere. Similarly the rollers round the vertical great circle can only roll on the
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sphere when its axis of rotation is in the plane of that great circle. The only axis

Julfilling both these conditions s that coinciding with the intersection of the two diametral
planes.

Figs. 13, 14, 15, 16, 18, and 19.

It was at the extremity of this axis C C’ (fig. 17) that the movable centres were
always in contact ; but their successful action was not due to this fact, but simply
because they, together with the supporting roller, fulfilled the other conditions.
These conditions, which can really be approximately, but never perfectly, fulfilled,
may be briefly stated as three in number :—

3 D2
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(1.) No slipping must take place.

(2.) Each set of rollers must always be in contact round the great circles
formed by two perpendicular (not necessarily horizontal and vertical)
diametral planes.

(3.) The axes of all the rollers must intersect the line of intersection of the
two planes.

It will be observed that nothing is said about the planes of rotation of the rollers
containing the centre of the sphere in the last condition, and the fact that this is not
necessary is taken advantage of in the last application which is described in this paper.

From the foregoing results it is evident that it is not the distribution of the rollers
round the great circle that is important, but the direction of their axes. Therefore the
rollers hitherto alluded to as movable centres do not require to be placed at the points
of intersection of the diametral planes, and may be removed to such a position that
they can never come into contact with the rollers round the horizontal great circle of
contact. At the same time the top and bottom rollers which are not required to be
in contact with the poles of the sphere may be removed to any other convenient
position along their great circle of contact.

Figs. 18 and 19 (p. 383) show respectively a diagrammatic plan and elevation of the
sphere and rollers thus arranged, and the views are lettered to correspond with figs.
11 and 12. Figs. 20 and 21 show the details of the mechanism designed to carry the
above principles into operation. 'The rollers in contact with the horizontal circle are
carried on a bracket, which is part of the fixed frame (I I). Those in contact
with the vertical circle are carried in a strongly-ribbed movable frame (F F). The
mode of attaining numerical results, if required, would be of course identical with
that employed in the instruments already described, and would require the additional
parts shown in connexion with them.

The two kinds of defects shown at the commencement of this investigation to exist
in the disk and roller have thus been practically eliminated.

(1.) The results of friction are reduced to a minimum, for not only does the change
of velocity ratio, ¢.e., the relative position of the axes of rotation of the sphere to the
fixed rollers, take place by rolling, but the sphere itself is entirely supported by
rollers, and thus there is absolutely nothing but rolling contact. This was not the case
with movable centres. The immediate result of this is that the hard, smooth surface
of the sphere is no longer necessary, since no twisting now takes place, and the edges
of the rollers transmitting the motion to be measured may now be serrated so as to
form the envelopes of their teeth upon the elastic surface of the sphere.

This effects a great reduction of friction, for the pressure which was formerly
necessary to ensure the transmission of rolling by frictional contact of the drlvmg
roller (A) in the fixed frame is now greatly reduced. The contact is now scarcely
frictional contact at all, and the pressure on the bearings is so reduced that the most
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delicate forces may be dealt with by the mechanism, and accuracy of numerical results
ensured.

(2.) With regard to range of action it is clear that theoretically this is now infinitely
great in both positive and negative direction, as may be seen by examining the travel
of the movable frame (fig. 21).%

Figs. 20 and 21.

g . 20
ELEVATION

MMM

Applications for discontinuous calculation.

It has been already shown how, with the sphere and roller, areas may readily be
integrated and the operation of differentiation (by employing a screw) be performed.
Various other results may however be obtained in a third way which has already been
alluded to (p. 871). Before discussing this it may be well to point out that a very
simple numerical computator is at once formed by the sphere and roiler integrator in
the special case where the position of the movable frame is constant during any given
motion of the driving roller. A product or quotient of two given numbers may be

* See note at end of the paper.
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“directly obtained in the following way. Suppose the rollers A and B (fig. 22) to be

graduated and a pointer or index attached to each so as to enable the distance turned
through by either to be read. Suppose each reading to be brought to zero and the
pointer P (connected with the movable frame) moved into a position such that

AP =ux= one factor.
Then turn the roller A through a distance such that the index on A reads

m = the other factor.

Then by taking suitable units, or what amounts to the same thing, by using
suitably proportioned rollers,
Reading of B = n = ma = product of the two given factors.
To obtain a quotient a similar method would be adopted, but the roller B would
now be turned instead of A, then

Reading of A =m =Z= quotient.

The practical application which suggests itself is that of the reduction of tables, in
which case one factor is constant. The work might be rapidly performned by always
turning A or B (as the case might be) through a constant distance from zero, the
pointer P having been first set to the other factor, to an adjustable stop when the
reading of the driven roller gives at once the required result.

Thus far the working is only a spetial case of that of the integrator, viz., where the
area is a rectangle, but with the form of instrument for the converse process, that is
with the roller A screwed upon its axis, a new principle can be brought into operation.
Suppose the roller B (fig. 22) to be turned through a distance 7, then the roller A
will in consequence turn through a certain distance m, but inasmuch as it forms a nut
upon the screw A P, it will at the same time continually alter the position of the pointer
P, and consequently the value of x, thereby changing the position of the movable
centres k%, or axis of rotation of the sphere. Thus the reading (m) of the index of A
is a value which is no longer a simple product or quotient but of a nature which must
be investigated.

Let 6, 6, be the angles turned through by A and B respectively.

Let

{ = pitch of the screw AP.
a = radius of roller A.

b= ,, ,, B.
2 = distance AP.
k= ,» AO.
Then
ﬂo—‘— tan a=$~6

adf k
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And
_%
T 27
al
df,= ;—0df
Then by integration

or

Thus suppose m and n are the respective final readings on the recording dials
connected with the rollers A and B, the initial readings having been zero—suppose

also that the pitch of the screw is such that the constant quantity ‘—l—%@ is equal
to unity.
Then

m=/n

that is, by turning B through a distance recorded on its own dial as n, the reading (m)
on the dial of A gives the square root of the former quantity.

Fig. 22.
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Again, suppose P (fig. 23) to be taken on the other side of A. Then by similar

reasoning since now

bdf, b
m = tan a_;c
2mak  dO
=" ¢
and by integration o
2mak
0,= 5 log, 6.

If, as before, m and n are the respective readings at the end of the operation, and
the pitch of the screw be such that

2mralk
bl

= modulus of the Naperian system of logarithms.

Then

n= log,, m.

In order to graduate the dials in the latter application, since @ can never be zero the
limiting position can never be reached ; but when

m=1 then n=0.

therefore the dials of A and B must be adjusted so that these two conditions are
simultaneously fulfilled.

In this way it is possible to find the logarithmn of a number m to any base by merely
turning the roller A through that distance and reading the dial of B.

There is another mode of obtaining any root, which will be easily understood
when it is remembered that by using n sets of spheres and rollers, the value of
(ey X xyX @y X . . . @,) can be obtained. Make these values of « all equal ; then with =
frames a is given. By turning the last wheel through 2", and keeping the frames in
suitable positions, the first wheel of the series will turn through a distance .

Thus, if the last wheel be turned through a distance N.

Reading of first wheel or roller

=m=+/N.

The application of a mechanism to obtain the foregoing results had been previously
suggested by Professor MosELEY in a paper already alluded to (p. 368), but the foregoing
investigation was made without any knowledge of this. The modification of Professor
James THOMSON's disk- globe- and cylinder-mechanism (figs. 3 and 4) may be at once
applied to obtain similar results.

Applications for continuous calculation.

The foregoing applications are for the purposes of obtaining numerical results in
which the mechanism is employed, rather as a discontinuous than a continuous
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calculator. The effects to be obtained by using two or more sets of spheres and
rollers in one or both the primary ways, that is for purposes of integration and
differentiation, must now be considered,

First let two sets of integrating mechanism be employed. In fig. 24 let

MN = a.
QN = b.
Ax = width of element NQ.
M = moment of area of MN about Ox where Oz is the trace of
the roller A on the cylinder.
then

M=a<§+b> AZ.

Suppose, now, that as the pointer of the integrator travels along the upper portion
of the curve, the wheel B, which in the simple integrator records the area, now drives
another sphere which has its frame kept so that the value corresponding to ¥ of the

original proof is always for that frame equal to g This result is easily effected by

keeping the frames perpendicular to each other, as in fig. 25, the axes being %, k, and
ky, k, respectively, and using suitable proportions of wheels or rollers.

Then when the roller A travels a small distance Az at M (fig. 24), the pointer
MDCCCLXXXYV, 3 B
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P describes upon the upper part of the curve say at M, a distance corresponding to
upper boundary of element of width Ax. Then:

Reading of roller C=(ﬁi——2b)2Am.

Similarly when the pointer m traverses the lower boundary of the element at N,

2
Reading of roller C= —% Ax

being negative because the roller A is now returning, and its motion is reversed.
Taking both results together
. 2 __p2
Reading for element MN=(~a—+%)——b' Ax

=a<g + b) A
=moment of area of element MN about Ox.

If now the whole distance moved through round the curve be taken where y; and y,
represent respectively b and (a+b) at any point of the curve, then
Reading of C= rg(yf—g/lz) dx

1

=moment of area of whole curve about Oz.

Fig. 26.

Secondly, let three sets of spheres and rollers be employed, as in fig. 26,*

I=moment of inertia of element MN about Oz,

* The axis k, &'y should be perpendicular to its present direction in the figure.
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then
a/ X\ 2
I='1‘1‘2'003+(1<§+b>
=3(ad+8a*b+3ab?).
Let now the third frame, and consequently the axis of rotation of the third sphere,
be kept parallel to the first and perpendicular to the second, as in the former case,

with the two sets, but let now the units be taken so that the reading of the distance
of the pointer P is

_1
y3—3y

then for the travel of the wheel A over the distance Oz, 7.e., the width ot the element

of area, both forwards and backwards, the reading of the recording wheel D of the
third set is

_(atby ¥
- 3 T3
=%(a3+8a*b+3ab?)

= moment of inertia of element MN about axis Oz (fig. 24).

By taking, as in the previous case,
=0
Yo=(a+b)

‘it is found that final reading of the dial of D for the whole travel of the curve

= [ ;%{ (Ha—9)+ 3 — 1)+ 3y —y)y*tde
= %J’:(yzg—ylg)dw

= moment of inertia of whole area about Oz.

Both the foregoing results may be at once proved in a more general way, thus it is
evident that the wheel B is turning at the rate £,dA where £, is some constant, and

A=area of curve,

then by means of the addition of the second sphere and roller the product is given as
with the first, and C turns at the rate

=hyy(k,dA)
3 E 2
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therefore, if
S,= reading of index for travel of the whole area of curve

Sy=lyly| ‘ydA

*Q

or with proper units

=791’“2LE(3/22“912)0Z9"

S,= moment of area about Oz.

With the addition of the third set of sphere and rollers

2y

S,= reé,ding of index 'D=k1k2f ksy(dM)

=/“1k2k34(:2(?/ o2 =1y,)dw

= moment of inertia of area about Oz.

Fig. 27.

Frg. 27

The three dials of B, C, and D may be arranged on the parallel raler as shown in
fig. 27, and thus a compact and inexpensive instrument formed, which will give on
three dials simultaneously and without the necessity of any calculation whatever, the
three quantities A, M, and L

But there are certain practical points of particular interest in this instrument which
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are worthy of consideration. In the first place its symmetrical proportions and wide
range of action, as shown by fig. 27, are due to the use of the general form of the
sphere and roller mechanism, by which the axis of rotation of the sphere can be made
to change across through the centre of the recording roller (B), so as to enable the
relative motion of this roller and that of the driving one (A) to be reversed, so that
positive and negative values may be obtained.

Suppose the pointer to be on that portion of the curve to the right of the line L M,
up which the driving roller is passing (i.e., really the axis of «)—then it has already
been proved that the area is integrated by the motion of B. But when the pointer
passes the intersection of the line L M with the curve the relative motion of A and B
is reversed ; this causes B to turn in the opposite direction (unless the widest point of
the area is accidentally reached at this point). But the pointer is really now travelling
round the opposite way on the curve to the left of L M, and the dial of B is therefore
only cutting out or subtracting the negative portion of the curve. When the highest
point is reached then the motion of the roller A will be reversed, and thus along the
rest of the curve to the left (since the pointer is still to the left of I M) the motion of
the index of B is positive, .., the area is continuously integrated.

Thus as far as the integration of areas is concerned it is absolutely immaterial how
the parallel ruler or rolling integrator is applied to the paper, or along what line the
roller A runs, whether within or without the curve.

Coming now to the moment of an area it is evident that the position of the
line L M has everything to do with the result, but it is clear that mathematically
there is an essential difference between this and the first case, for now a negative
value of y does not as in the first case give a negative result—from the equation

] =—§—Iy2dw

and on examination it is found that the index of the wheel or roller C which records
this result always moves in the opposite direction to the index of B when y is negative.
Lastly the equation for moment of inertia

I=}[yde

shows that in this case where y is negative the value of I is recorded in the same way
as the area. It will be seen that the mechanism always effects this result, without
adjustment or correction by the very principle of its action, and adds the moment of
inertia for both sides of the line.

This peculiar relation between A, M and I, though evident upon a consideration of
what these quantities mean in practical mechanics is thus clearly brought out.

There is no reason (in theory) why the number of spheres should be limited to
three or the frames kept parallel or perpendicular to each other. Thus it is possible
to obtain the integration of



394 PROFESSOR H. S. HELE SHAW ON THE THEORY OF
[F@)Fe) . . .. Fuw)da

where 7 is the number of sphere and roller mechanisms, each frame being made to
assume a position depending on the respective function with which it deals.

The volumes of solids of revolution can be obtained (with two sets) by merely
passing the roller A in direction of the axis of x, and keeping the pointer P on
the surface, so that at all times

y= radius of circle of revolution.
Then

volume:wfygdm

Also with ruled surfaces the pointer of 1st set is kept on one surface, so that

;= one ordinate=y=d¢()

and .
yo= the other=2=y(x)

Reading of index of C=Iyzdx

= Volume=I(ﬁ("l’)’#("c)da6

Again, in the integration of trigonometrical functions, which are of great importance
in naval architecture, it is only necessary to keep the pointer of the index which
is attached to the movable frame, and so controls the axis of rotation at the angle, the
trigonometrical ratio of which is a function of @, as for instance, in the equation

y:j’x tan o d

0

which gives the area of a curve in which

a= angle of heel of vessel

x= corresponding ordinate.

All the ratios could be in this way easily dealt with.

The converse application of the sphere and roller mechanism will easily be under-
stood, as the principle has already been fully dealt with in the case of the disk
and roller, though only the one example of the speed indicator has yet been

suggested—in this case the position of the pointer indicates fv:—-gz.

Suppose, however, that a single sphere and roller arranged for the purpose be
applied to a single integrating mechanism which is giving the work done in a steam
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engine as already described (p. 368). The recording wheel of the latter is turning at
a rate =ydx, where, if W be the measure of the work done,

ydae=dW

Therefore if this wheel or roller actuate the former single sphere, the pointer of the
movable frame of that set of sphere and rollers indicates the result
aw

R= _dt_: rate of working.

In suitable units
= wmdicated HP,

By causing the pointer in its motion to work the driving wheel of a second sphere
whilst a clock drives the screw, the pointer indicates the ratio=e.

‘Where
ds
13)

="

dt
_&s
Tdr
= acceleration, or rate of change of velocity.
So in theory any order of differential coefficient <§;—Z) may be obtained, n being the
number of sets of spheres and rollers used.

Fig. 28.

R O RCEFEATIC
R Q

For integrating the volume of any irregular solid the following approximate method
may be suggested. Let A C B, fig. 28, be the section of the solid by the coordinate
plane parallel to which the ordinates (y) are measured. Let R Q be a screw the axis
of which coincides with the axis of @. Suppose the pointer P to be passed round the
solid in planes perpendicular to the above plane and at the same time carried along
by the screw R Q—P making one revolution round the solid for one turn of R Q—
then the final result of record of the index of roller

= !ydx
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Let

n= number of revolutions of RQ

I= pitch of its screw
Then approximately
Volume of solid =nlfy0lm

By making ! very small the result may be made to approach the true value as
nearly as desired.
The operation

[ f#)(w, y)dydz

may, however (in theory), be performed in the following way.

Let A C B, fig. 29, be as before the section of any solid. Then to find its volume
the foregoing expression would (if possible) first be integrated with respect to ¥, and an
expression of the form Volume= [y(x)dx obtained. The expression y)(x) may be called
the ordinate of a curve of areas which may be represented by A D B E, the ordinate
D E =y=vy(x) at any point of which gives the numerical value of the area for that
value of the abscissa x. By passing the pointer of the simple integrator over the
curve A D B E, the volume of the solid is given at once. .

To apply this reasoning to effect a mechanical solution, the pointer of a simple
integrator must be passed with sufficient rapidity round the solid as it moves along

the axis of z, so that the differential coefficient %: average areas can be obtained,

this gives at any instant the ordinate (D E), which can be used as above stated by
means of a suitable mechanism.
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Investigation of work lost in friction.

The work lost in friction in the sphere and roller mechanism occurs partly in rolling
contact and partly upon the axles, which will be here investigated, is that upon the
axles of the movable frame. There are two kinds of effect and two only upon these,

viz., direct pressure upon the bearings and twisting of the plane of rotation. The
combined effect of these results in

(1.) A direct pressure on the bearings,
(2.) End pressure resulting, according to the construction, in either pivot or collar

friction.
Let
L= work lost in one revolution of the sphere
N= number of revolutions of rollers for one revolution of sphere
W ,= pressure on bearings (direct)
W,= pressure on pivot or collar (end)
¢= coeflicient of friction
R= radius of sphere
r= radius of rollers
p= radius of axles of rollers
n= number of rollers in movable frame.
Then
L=L,+L,
where

L,= work lost in direct friction by direct pressure on bearing

=27pNW,sin ¢
L,= work lost in pivot friction
=4mpNW, tan ¢
. W
L=2mnpN sin ¢ (W1+% p— ‘;{))

Then it is required to find an expression from which N is eliminated and W,, W,
expressed in terms of the force to be transmitted.
Let figs. 30 and 31 be respectively a plan and elevation showing diagrammatic

. views of sphere G with rollers A A, B B, in contact respectively at points a o’ b b'.
Let ‘

P = force to be transmitted acting on periphery of driving
roller (generally taken as A in the figures).
Q = reaction of the driver wheel (B).
o = angle of vertical diametral plane to plane of rollers B,
kk' being axis of rotation of the sphere (fig. 30).
MDCCCLX XXV, 3 ¥
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Then must
ap
Q——P—bq =Pcot a

otherwise the motion will be accelerated.

Then, since the component of force applied on wheel A normal to the surface, in
direction of arrow «’, necessary to maintain adhesion, is balanced by the reaction at «,
and also that at B by the reaction ', the effect of the two forces P and Q is the
same as two forces at the axis of the sphere and two couples about the axis, The
forces act respectively at p and ¢ (fig 30). The couples Pxap and —QXbg. Their
combined effect is

M=P.ap—Q.bg=P(ap— cot .bq)
but
ap=R cos o

bg=R sin a
Resultant couple about axis
=P(R cos «a—R cot a sin &)
=0.

Therefore the only effect is that due to parallel forces P and Q acting perpendicular
to the axis at the points p and g. The effect of these is equivalent to the couples
(P.op+Q.09) actihg in the vertical plane of the axis, and the force (P—Q) acting at

the centre of the 'sphere.
Figs. 30 and 31.

In fig. 81 let
y = angle of plane of rotation of the rollers with a vertical plane.

Then supposing the rollers to be.gymmetrically distributed.
(1.) Vertical force on point of contact of each
_P-Q
="
_ P(1— cot «)
=
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This may be resolved into

P(1— cot . i
—P(A—cota) 200 %) cos y= direct pressure on bearings

— P(L = cot o) _20013 %) sin y= force tending to twist the plane of rotation.
(2.) The couple
=P.op+Q.0q
=P(op+o0q cot )
=PR(sin a+} cot a cos a)

sin? «+ cos?a
- PR( sin )
— R
T sina
This acts on the rim of the rollers, and if they were four in number would produce

the effect upon each rim

_rR 1
2sina " 2R
_ P

T 2sina

Summing, now, the total twist

Ti+'l‘2=g{—.1~+(1 — cot &) sin 'y}

Sin «

Let d = half the length of roller axis—that is distance between centres of pressure
on either side of roller.

Then the result of this twist is
Direct pressure on pivot or collar

P
—_—Z{SI—H‘-F(I— cot a) sin 'y}

Pressure on bearing

P
=3 {sm a+(1 — cot &) sin 'y}
Finally, since
2rRcosy R
= = C08y

N=

and

W,= [ (1— cot ) cos ')/}-I-{Sm +(1— cot «) siny}g}
Wz=§ {sm +(1— cot &) sin 7}

L=2mpN sin ¢<W +2 W, )

cos ¢

=2mpN sin ¢§[:<{(1— cot o) cosy}—l—{sTn———}-(l—— cot o) sin y} >

2
+3 cos p(@""(l — cot a) sin 7)1

3 F 2
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Differentiating with respect to y and equating to zero gives the best angle for y,
therefore

tan -y=;+ 3 cos ¢

which result can be at once applied in practice.
In the model made

y= 45°,
Then
tan y=1
p=5°
cos ¢p="996.
- This gives

9

;:% (nearly).

Power Form.

Figs. 82, 33, and 34 show three views of the power form” of sphere and roller
mechanism, which has been constructed to test the actual power transmitted. In this
form an important modification, due to the author’s brother, Mr. EpwARD SHAW,
Whitworth Scholar, Stud. Inst. C.E., has been introduced. It was mentioned that
there was no necessity for the planes of rotation of the bearings to contain the centres
of the sphere so long as their axes all passed through its axis of rotation. It is,
therefore, possible instead of merely having sharp-edged disks to act as roller bearings
(as in figs. 20 and 21) to have conical rollers. The elastic spherical surface yields to
the very slight extent necessary to allow the flat edge of these rollers to form a
straight line (instead of a point) of rolling contact passing through the apex of either
of the cones, the fustra of which are shown in fig. 32. Ewery part of such o cone
therefore, rolls wpon the sphere. The action of these cones, which have a number of
fine grooves round their peripheries, is even better than was anticipated. There are
various points about this design which might be noticed. One is the construction of
the frame F (fig. 84), which allows the pressure put upon the centres to close in its two
sides and so maintain the requisite pressure on the sphere by means of the locked centre
screw (H) without the use of expensive arrangements for springs, which were employed
in the movable frame of the second integrating machine. The frame, though ribbed and
otherwise rigid, is of smaller cross-section at A h (fig. 34) to allow this springing in or
out to take place. The convenient nature of the supporting bracket or frame, which
is self-contained, and which can be placed anywhere or in any position, is evident,
and also the important point of its general simplicity of construction.

It will be seen from the previous investigation that the loss of work in the trans-
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mission of power is small and easily calculated, and, moreover, may be reduced by
increasing the value of N, and therefore reducing both p and P. Practical defects
from any possible yielding of the sphere from the effect of the last of these three
quantities, viz., P, which cannot well be made a matter of calculation, are thus reduced
to any required extent. If the mechanism should prove to be durable, there is, apart
from the purely mathematical objects which necessitate accurate working, and which
led to its discovery, no apparent limit to its practical applications. It could replace
combinations of wheel-work for such purposes as are required in cotton-spinning or

Figs. 32, 33, and 34.
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textile machinery, small lathes, electric, and other machines where rapid change of
velocity ratio is required, and absolute accuracy is not essential.

The thanks of the author are due to his friends Mr. Epwarp Buck, M.A., and
Mr. C. D. SELMAN, of whose valuable opinions he has been glad to avail himself in
several points in the paper. Also to his brother, Mr. EDWARD SHAW and to Mr.
CuARLES Burrock, B.A., for the great skill they have shown in constructing the
second form of Integrator and the “power” mechanism, and for the assistance of the
former in the preparation of the drawings.



402 PROFESSOR H. S. HELE SHAW ON CONTINUOUS CALCULATING MACHINES,

NorteE.
(Added February 4, 1886.)

Some months after the foregoing paper was communicated the author happened to
read a letter, written Nov. 5, 1881, by M. VEnrosa, of Madrid, and published in
‘Nature’ (Nov, 24), in which the writer describes a proposed method of obtaining
the N, 8., E., and W. components of the wind. The method was briefly this. A
sphere resting at one pole on a point in the periphery of a roller or disk, and in
frictional contact at four points of its equator with four other rollers or disks, would
(the planes of all the rollers being vertical) freely revolve upon the turning of the
bottom roller. If the plane of the latter were always kept parallel with the direction
of the wind, and it were turned at a rate proportional to the wind velocity, and at
the same time the planes of the four others were placed in pairs respectively N. and 8.,
E. and W., the latter would record the four corresponding components of the wind.
M. VeNTOSA was led to this idea in 1878, after reading an account of VoN OEITINGEN'S
Integrating Anemometer, by the endeavour to obviate the sliding friction of that
instrument. The arrangement he suggests is per se incapable of performing other
mathematical operations than simple addition, and, in fact, is only one of the two
necessary but distinet features of the author’s mechanism mentioned in the abstract
of the above paper (Proc. Royal Society, 1884, p. 191). M. VENTOSA, however, in his
letter, truly says of his proposal, “ Cette transmission se fait ici par roulement sans
glissement ” (the italics are his own), and he must be regarded as having, prior to the
author, suggested the use of a sphere and rollers for effecting a change in the axis of
rotation of the sphere without necessitating other than rolling contact.—H. S. H. S,



